Symmetric and Zygmund measures in several variables
نویسندگان
چکیده
منابع مشابه
Orthogonal polynomials of several variables for a radially symmetric weight
This paper considers tight frame decompositions of the Hilbert space Pn of orthogonal polynomials of degree n for a radially symmetric weight on IR, e.g., the multivariate Gegenbauer and Hermite polynomials. We explicitly construct a single zonal polynomial p ∈ Pn with property that each f ∈ Pn can be reconstructed as a sum of its projections onto the orbit of p under SO(d) (symmetries of the w...
متن کاملMarcinkiewicz-Zygmund measures on manifolds
Let X be a compact, connected, Riemannian manifold (without boundary), ρ be the geodesic distance on X, μ be a probability measure on X, and {φk} be an orthonormal (with respect to μ) system of continuous functions, φ0(x) = 1 for all x ∈ X, {`k} ∞ k=0 be an nondecreasing sequence of real numbers with `0 = 1, `k ↑ ∞ as k → ∞, ΠL := span {φj : `j ≤ L}, L ≥ 0. We describe conditions to ensure an e...
متن کاملApproximately generalized additive functions in several variables
The goal of this paper is to investigate the solutionand stability in random normed spaces, in non--Archimedean spacesand also in $p$--Banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.
متن کاملAnalytic Combinatorics in Several Variables
Dedication To the memory of Philippe Flajolet, on whose shoulders stands all of the work herein.
متن کاملComplex Dynamics in Several Variables
1. Motivation 117 2. Iteration of Maps 118 3. Regular Versus Chaotic Behavior 119 4. The Horseshoe Map and Symbolic Dynamics 120 5. Hénon Maps 123 6. Properties of Horseshoe and Hénon Maps 126 7. Dynamically Defined Measures 127 8. Potential Theory 129 9. Potential Theory in One-Variable Dynamics 131 10. Potential Theory and Dynamics in Two Variables 133 11. Currents and Applications to Dynamic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 2002
ISSN: 0373-0956
DOI: 10.5802/aif.1881